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SUMMARY

The objective of the paper is to present a modification of a well-known model with
the split plot design by adding new parameters and applying a hierarchical
classification as well as a multivariate analysis of variance. The issue is illustrated
by the data gathered in the course of a three-year experiment in which changes in a
weed community under the tillage systems and doses of herbicides were studied. In
the multivariate analysis of variance the weed species were treated as variables and
the relative abundance of species as the studied feature. The added parameters
describe the effects of the times of observations and the relevant interaction effects.
The data were analyzed for each year separately. Herbicides were applied between
the first and second observation of the quantity of weeds; thus there were no effects
of the herbicide doses for the first time of observation in the first year. Due to this,
appropriate restrictions were added to the model. Additionally, in the case of
rejection of the null hypothesis the analysis was continued by applying the multiple
comparison formula for some chosen sources of variation for the data from the last
year of the experiment.

Tillage systems, as well as terms of observations and interaction of these factors,
caused significant changes in the relative abundance of the weed community.
Moreover, in 1999 and 2000 significant differences occurred in doses of herbicides.
There were no significant changes observed in the weed community caused by the
interaction of tillage systems, terms of observations and doses of herbicides.

Key words: herbicide doses, relative abundance index, Roy’s test function,
simultaneous multivariate multiple comparisons, tillage system.
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1. Introduction

In most plant community experiments, dry weight or diversity indices are
counted (Pawlowski and Wesotowski, 1982; Jedruszczak et al. 1997; 2000),
which determines the application of a univariate analysis of variance.

In 1997-2000 in the Department of Soil Tillage and Plant Cultivation at the
Agricultural University in Lublin, an experiment was conducted in which the
influence of experimental factors on production and weed infestation of winter
wheat cultivated in a short-time monoculture was analyzed. The numerical data
from this experiment were analyzed by univariate standard methods and presented
in a paper by Antoszek (2000).

Changes in the weed community with regard to species relationships and the
use of the multivariate methods to estimate them (Morrison, 1990) seemed to be
promising. In the paper a proposition of a multivariate model, which provides the
possibility of estimating changes in the weed community under experimental
factors by verifying general and particular hypotheses, is presented. An additional
factor, time of observation, determined the modification of the well-known model
for the split-plot design, under which the experiment was carried out. Not only
was a new parameter added to the model, but also, since time of observation
influenced the estimation of one of the experimental factors, the hierarchical
classification was applied (Kuna-Broniowska, 2000). Additionally, for the data
for the first year, some non-standard restrictions on the model parameters were
used. The necessary modification of the split-plot design model and additional
restrictions made it impossible to use the known analysis of variance formulas for
three factorial designs.

The results of multiple comparisons provided detailed information about the
species for which the studied feature changed significantly and about the
experimental factor levels at which these changes appeared.

2. Material and methods

The experiment was carried out by a split-plot method, arranged in 4 blocks
(r=4) in the 1997/1998-1999/2000 seasons. In the model, the tillage system (A, -
conventional, A, - reduced with disk harrow, A; - reduced with cultivator, A4 -
zero) was the treatment randomized on the main plots, and doses of herbicides
(B1-100%, B»-75%, B3-50%, B4-25%, Bs-0% of permissible dose) on the sub-
plots. The changes in the weed community developing in winter wheat cultivated
in a short-lived monoculture were analyzed. Weeds were counted three times a
year: T, (in spring, before the application of herbicides), T, (about 15 days after
the application) and T (in summer before the wheat harvest) (Antoszek, 2000).
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To avoid the problem of the non-uniform distribution of weeds, relative
abundance (Ra) was calculated (Conn and Delapp, 1980) according to the formula

Ra = rd_;_rf_.l()o % , 2.1

where the relative density (rd) was calculated as the number of individual
occurrences for a given species within four samples of the subplot divided by the
total number of weeds from these samples; relative frequency (rf) was calculated
as the ratio of the number of samples in which the species was present to the
number of samples with weed species per subplot.

In spite of the fact that the experiment was conducted in a split-plot design, an
additional source of weed variances should have been taken into account, namely
the time of observation. Moreover, herbicides were applied each year at the
beginning of summer, so changes in the studied features caused by herbicide
doses could be estimated only at particular times of observation, and this is why
the mathematical model presented below includes hierarchical classifications of
some parameters.

The application of herbicides after the first time of weed estimation also
determined non-standard restrictions on the model parameters for the data from
the first year of studies caused by the lack of herbicide dose effects (it was before
the herbicides were used).

2.1.The model

Let us repeat the notation introduced above: A — main-plot treatment (tillage
system; a=4), B — sub-plot treatment (dose of herbicides; b=5), T — additional
treatment (time of observation; t=3).

A single observation for the h-th variable in the newly proposed model is
described as a linear function

yijksh =Up t P +ajh + Trp +(0{Z‘)jkh +eijkh +ﬂs(k)h + (aﬁ)js(k)h +eijksh’ (211)

where 4, denotes general mean (h=1,...,p), p» — the effect of the i-th block
(i=1,...,r), o, — the effect of the j-th level of factor A (j=1....,a), % — the effect of
the k-th level of factor T (k=1,...,t), By — the effect of s-th level of factor B
inside the k-th level of T (s=1,...,b), (@7) ju», (B);sn — relevant interaction effects,
and e;iu, €;sn— random effects of experimental errors.

Taking into consideration p variables — species of weeds — a single observation
is a row vector consisting of p values of the studied feature (Ra).
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In the matrix notation, the model (2.1.1) can be written as follows:

Y= XM“+XRp+XAa+X1T+XAT(aT)+X1 €] +XB(T)B+XAB(T)(GB)+X2e1 , (2 1 2)

where N=rabt is the number of observations for each of p variables, Y is the Nxp
matrix of observations, W is the p vector of general means, p is the rxp matrix of
the fixed effects of blocks, a is the axp matrix of the fixed effects of treatment A,
T is the txp matrix of the fixed effects of treatment T, @t is the atxp matrix of the
interaction effects between A and T, e, is the r(a+t+at)xp matrix of the random
errors for the main plots, B is the btxp matrix of the fixed effects of treatment B,
af is the atbxp matrix of the interaction effects between treatments A and B, and
e, is the Nxp matrix of the random errors for the sub-plots. The matrices

Xm=1x, XR=Ir®latb’ XA=1r®Ia®1tb, XT:1m®It®1ba XAT=1r®Iat®1ba XB(T)=1ra®Itb’
Xapr=1®Lu, Xi=[I:®1: [®1,BL®1,: L,®1,], Xo=Iy

are the relevant design matrices. ® denotes Kroneker’s product of matrices, Iy is
the kxk identity matrix and 1; is the k vector of ones.
The multivariate linear model (2.1.2) can also be written in the following form

Y=X0+U, (2.1.3)

where Y is the Nxp matrix of observations, @ is the qxp matrix of the unknown
parameters of the model, X=[Xum: Xr: Xa: Xr: Xar! Xpm! Xapm] is the Nxq

design matrix,
: €
U=[X;: X;]
€2

is the Nxp matrix and g=1+r+a+t+at+bt+abt is the number of parameters in the
model for each of p variables.

We assumed that: 1) the rows of experimental error matrices e, and e, are
independent and normally distributed with the null mean vectors and X;, X, the
PXp covariance matrices, respectively, 2) the number of observations (N) for each
of p variables is not less than p+q, 3) Y~N,(X®,V), where the covariance matrix
Vis equal to (I.®J+L@J.RL®Jy+I,®Jp)®L +IN®X,, and Jj is the kxk matrix
of ones.
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2.2.Estimators of the model parameters

The design matrix X is not of full rank, so in order to obtain the unique
estimators the restrictions on the model parameters should be added. Here, for the
h-th variable, a part of the restrictions takes a standard form

Zp,,,=0, Z“ﬂl=0’ Z”khzo’ Yz(m'),-kh=0,
i i k k
Yz(ar)”‘" =0, Xz(aﬂ)mkm =0, XZ(aﬂ)p(m =0,
1 s j

(2.2.1)

and since there is no effect of the B factor for the first level of T for the first year
of study

ﬂ:(l)h =0, leﬂs(k)h =0,

(@), =0, j‘\ZﬂZ(aﬂ)b‘(k)h =0, sxlg(aﬂ)j:(k)h =0 for the first year (2.2.2)

Yzﬂsmh =0, ijZ(aﬁ)js(k)h =0, Y’(Z(aﬂ)js(,‘)h =0 } for the next years
s s T

In the matrix notation the restrictions (2.2.1) and (2.2.2) can be written using
the following formula

Z=diag(Zg,Z s, L LAty LprysLagm) (2.2.3)

Sub-block matrices in (2.2.3) take the following forms

Z, =1’r’ z, =1:n Z, =1:’ Z,, =|}Z :::]
ol ]

(-lxb  Te-l b

I, @[]b thxb((-l)] + for the first year (2.2.4)
ZAB(’I’) =1, ®[0(t—l)><b Slt—l ®1:;]

1; ® [Ob(l‘l)xh EIh((—l)]

I, ®1;

ZB(T) = [I: ®1;]~ ZAB(T) =|:l' QI
at b

]} for the next years
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where 0;,; denotes the ixj matrix of nulls.

The location of sub-blocks (2.2.4) in the Z matrix enables us to choose
relevant parameters of the ® matrix. The other elements of Z are nulls. Thus the
restrictions (2.2.1) and (2.2.2) for p variables can be written as: Z® = 0. Since the
rank of [X iZ'T is equal to g, the estimator of the unknown parameters can be
calculated according to the formula

0=GX'Y, (2.2.5)

where G=(X'X+Z'Z)" is one of the generalized inverse matrices of X'X.

2.3.Hypotheses and tests

In order to find out which of the experimental factors effected significant
changes in the studied feature for each variable, the null hypothesis Hy: KO=0
should be verified against the alternative one H,;: K®+0 under the assumption that
rank(K) < min(rank(X);d) for the dxq matrix K.

In this model verification of hypothesis H is reduced to verifying the following
hypotheses related to the sources of variation: Hys — assuming equality of the A
treatment effects (ct) i.e. assuming the equality of the vectors of the tillage
systems effects, Hyr — assuming equality of the T treatment effects (1) i.e.
assuming the equality of the vectors of the terms of observations effects, Hogr) —
assuming equality of the B(T) treatment effects (B) i.e. assuming the equality of
the vectors of the doses of herbicides effects in relevant times of observation,
Hoar — assuming equality of the AxT interaction effects (at) i.e. assuming the
equality of the vectors of interaction effects between the tillage systems and times
of observation, Hoag(t) — assuming equality of the AxB interaction effects (ap) ie.
assuming the equality of the vectors of interaction effects between the tillage
systems and the doses of herbicides observed in relevant times.

A simplified table of the analysis of variance (Table 1) for the model (2.1.2)
is presented as follows
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Table 1. Table of analysis of variance for the model (2.1.2)

Source of variation | Degrees of freedom Sumn:)aftrpiic;gucts
Blocks r-1 Hg
A factor a-1 Ha
T factor t-1 Hr
AXT interaction (a-1)(t-1) Har
Error | (at-1)(r-1) E,
B(T) factor t(b-1) Hgm)
AxB(T) interaction t(a-1)(b-1) AB(T)
Error I1 at(r-1)(b-1) E,
Total ratb-1

The sum of product matrices connected with the relevant null hypothesis can be
obtained in the following way

Hi=0 'K’ [K:GKr' 'Kz O,
H,=0 K.’ [K.GK, 'K/ O,
Hi=0 'Kr'[K:GKr']'K: © 23.1)
Hyr=0 "Kur' [KirGKr' ] 'Ksr @
Hm=0 "Kiny' [KonGKan'T'Kery ©
Hapmy= 0 "Kasn' [KasmGKasm'l ' Kasm 0]
where:
KR=[0(r-1)x1E | IS PR 0¢-1)xg--1)s
KA=[0(a.1)x(1+r)5 Ia-lE 'la-lE O(a-l)x(q-a-r-l)]’
Kr=[0 iyx1amsa) * Lirt 1t ? Opeqrar)s (2.3.2)
KAT=[0(at—l)x(l+r+a+t)E Iat-! . 'lat-l . 0(at~1)xbl(a+l)]v
KB(T)=[0t(b-l)x(q-bt(a+l))E It®[lb-lE 'll}—l]S 0t(b-l)xabt]v
Kasm=[0ue- ety : Ta®To1 - ~1p4]]
are contrast matrices for the null hypotheses connected with the sources of
variation. The rows of these matrices contain 1 and -1, corresponding to the

comparisons of the effects of experimental factors. The other elements of the rows
are equal to zero.
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The sum of product matrices for errors was calculated by applying projection
operators (Mikos, 1973; Kuczynski 1976)

E] = Y’PlY, E2 = Y’PzY (233)

where Py: RN—*R(Xl) takes the following form

1 1 1 1
P =—, --J)Hed, —_Ja)®th+i(Ir _lJr)®Ja ®, _—Jt)®Jb+
tb r a ab r t

1,218, -1y ea -yye,. (2.3.4)
b r a t

and P,: RN—->R(X2) is obtained in the following way

1
P=—0,-20)@l, @0, - 1)+ a, - Liea, -Ly)es eq, - Li+
at r b t r a b

+l(I' _lJT)®Ja ®(Il _lJ‘)®(Ib —th)+
a r t b

01100, 300, -11)8d, -11,) (23.5)

The matrices P, and P, are projection operators of N-dimensional Euclid’s
space R" on the column space of matrix X; and column space of matrix X,
respectively, which was written in the short form P;: RV—R(X,) and P,
R">R(X,).

Roy’s test function W; is used to verify the null hypothesis. This test is based
on the maximum eigenvalue A, of the matrix type HE!

A (2.3.6)

U144,

The obtained value should be compared to the 100a-percentage critical value
Wasmn from Pillai’s tables or Heck’s nomograms. The parameters of the W,
distribution are calculated according to the formulas

s=min(r(K),p), m=lr®-p-1  ,_N-rX)-p-1 (2.3.7)
2 2

where r(K) is the rank of the matrix K.
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In order to verify the null hypotheses connected with individual sources of
variation the maximum eigenvalues of the following matrices should be
calculated: HAEl-l, HTEI.I, HATE]—I, HB(T)EZ'I, HAB(T)EZJ.

When the null hypothesis is rejected it is possible to obtain additional
information using multiple comparisons by applying Roy’s confidence bounds
formula (Kuna-Broniowska, 2000)

P 4 W, k2 p 4 w g, k2
S Yok - e S a0 <Y Saktu <3S aks + [ TS aka, (238)
=] ih

h=l i a =1 ik h=t i=1 h=t =1 a =y

where g,; is the effect of the studied treatment for the h-th variable, W, is the
1000.-percentage critical value from Pillai’s tables or Heck’s nomograms, Y, is
the mean value of the studied feature in treatment subclasses for the A-th variable,
n;, denotes the number of observations on the basis of which the mean value y;,
was counted, a, is a coordinate of vector a choosing the h-th variable, &; is a
coordinate of contrast coefficient vector k choosing the parameter 6,; from the
matrix @, E, denotes sums and products of the experimental errors matrix
(m=1,2). Since the multivariate comparisons were made within the particular p
variables, the vector a for the h-th variable is a p-dimensional vector of zeros with
one in the h-th position.

In the paper we did not determine confidence bounds, but used part of the
formula (2.3.8) to obtain the lowest significant differences denoted by

qi 2
L=J Wo N ki yp g (2.3.9)

which enabled us to find out if there were significant differences between the Ra
mean values of weed species related to experimental factor levels.

3. Results

The data were analyzed separately for each year of the experiment. In order to
make an assumption about the truthfulness of the normal distribution of the data,
a transformation was made, according to the formula

zZ = arcsin

1
00% 3-1)
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This is the most common transformation for percentage (Trgtowski and Wéjcik,
1988; Derksen, 1995). In spite of this, there were still a lot of species which had
to be restricted because of the assumptions of the multivariate analysis of variance
(Morrison, 1990; Krzysko, 2000). Therefore, among the 46 weed species which
infested the winter wheat canopy, only 31 species from the first year of the
investigation and 20 species per year from 1999 and 2000 were analyzed (Table
2). The calculations were made using the Maple application and our own
implementation of the formulas presented above.

Table 2. List of weed species and mean value of the index Ra in 1998, 1999 and 2000

Latin name of species Bayercode | 1998 1999 2000
Apera spica-venti® APESV 18.12 28.81 38.84
Galium aparine® GALAP 985 953 561
’Z air l‘fs‘;’ i;’:;ggé"“ MATIN | 942 1046 871
Stellaria media® STEME 1421 1791  8.58
Galeopsis tetrahit® GAETE 640 175 065
Galinsoga parviflora’ GASPA 033 001 0.02
Cirsium arvense® CIRAR 263 116 073
Equisetum arvense’ EQUAR 062 074 0.1
Polygonum lapathifolium’ | POLLL 1.66 0.08 0.01
Chenopodium album® CHEAL 1.89 057 0.38
Taraxacum officinale’ TAROF 065 007 0.06
Gnaphalium uliginosum’ | GNAUL 026 0.03 0.01
Veronica arvensis® VERAR 6.62 3.07 5.16
Myosotis arvensis® MYOAR 580 881 9.9
Fallopia convonvulus® POLCO 098 024 0.04
Plantago intermedia’ PLAPA 0.48 0.00 001
Capsella bursa-pastoris’ | CAPBP 7.62 345 401
Lapsana communis® LAPCO 1.09 128 228
Viola arvensis® VIOAR 1.05 263 5.6l
Poa annua’ POAAN 042 003 003
Lamium amplexicaule® LAMAM 564 6.05 477
Chamonmilla suaveolens’ MATMT 0.17 0.19 0.20
Lamium purpureum® LAMPU 1.68 179 149
Agropyron repens® AGRRE 0.16 0.13 0.26
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" Echinochloa crus-galli ECHCG 006 0.04 0.01
Galinsoga ciliata GASQU 0.08 0.01 0.01
Convolvulus arvensis' CONAR 003 0.03 004
Veronica persica® VERPE 1.15 165 2.36
Papaver rhoeas’ PAPRH 006 006 0.04
Melandrium album MELAL 002 0.00 000
Vicia hirsuta' VICHI 0.10 000 008
Stachys palustris STAPA 0.02 000 000
Geranium pusillum’ GERPU 007 0.07 025
Polygonum aviculare POLAV 0.03 0.05 0.01
Sonchus oleraceus ERICA 001 0.00 0.00
Conyza canadensis SONOL 001 0.00 0.00
Spergula arvensis’ SPRAR 0.21 0.02 0.00
Thlaspi arvense® THLAR 0.18 001 028
Anagallis arvensis ARBTH 0.01 0.00 0.00
Scleranthus annuus SINAR 003 0.00 0.00
Polygonum persicaria MYSMI 0.04 0.00 0.00
Anthemis arvensis ANTAR 002 000 000
Myosurus minimus POLPE 0.04 0.03 0.00
Sinapis arvensis SCRAN 0.01 0.00 0.00
Arabidopsis thaliana ANGAR 0.04 0.00 0.00
Fumaria officinalis FUMOF 001 0.00 0.01

Ispecies included in the analysis for the data from 1998
%species included in the analysis for the data from each year of study

Each year significant changes in relative abundance of the weed community
were influenced by the tillage systems, times of observation and the interaction of
these two factors. Moreover, in 1999 and 2000 significant differences occurred in
doses of herbicides. There were no significant changes in the weed community
caused by the interaction of the tillage systems, terms of observations and doses
of herbicides (Table 3).
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Table 3. Results of multivariate analysis of variance for the experimental data

1998 1999 2000
Sources of variation Ws Woos| Ws W .| W Woos
Tillage systems A 0.837* 0.36 | 0.710% 0.22 {0.571* 0.22
Terms of observations T | 0.987* 0.30 {0.912* 0.20 | 0.952* 0.20
Interaction AxT 0.982* 0.38 | 0.688* 0.29 | 0.745* 0.29
Doses of herbicides H(T) | 0.370 0.38 | 0.653* 0.32 | 0.736* 0.32
Interaction AxH(T) 0492 0.51 ({0320 0.36 {0.335 0.36

*significant changes in the mean Ra value at the leve! 0=0.05

Since the experimental factors as well as their interactions caused significant
changes in the weed community every year, a large number of multiple
comparisons could be considered. However, the authors decided to present only
some of the results for the last season data, when the experimental factor activity
was settled, as an example of the application of formula (2.3.9). As mentioned
above, only the smallest significant differences were calculated and used for
comparison. In this case confidence bounds, as counted on the transformed data,
would not have any practical interpretation.

The results of multivariate comparisons showed that the tillage systems
differentiated the mean value of relative abundance for the following species:
CAPBP, STEME, CIRAR, MYOAR, APESV, LAPCO and VIOAR (Table 4).
The studied feature for the majority of the species significantly differed between
the system with disk harrow (A,) and direct sowing (A4). The were no species for
which the relative abundance significantly differed between the classic tillage
system (A,) and the reduced system with disc harrow (A,).

Table 4. Multivariate comparisons of mean Ra between tillage systems (2000)

Weed SpCCiCS L 'AI'AZI IA[~A3I IAl'A4l |A2-A3| |A2-A4l IA3-A4I

APESV 0.0411 0.0364 0.0072 0.0100 0.0292 0.0464* 0.0172
GALAP 0.0441 0.0054 0.0022 0.0315 0.0075 0.0262 0.0337
MATIN 0.0498 0.0326 0.0323 0.0275 0.0003 0.0051 0.0048
STEME 0.0507 0.0459 0.0660* 0.0931* 0.0201 0.0472 0.0271
GAETE 0.0447 0.0062 0.0075 0.0177 0.0013 0.0116 0.0102
CIRAR 0.0416 0.0254 0.0236 0.0293 0.0018 0.0547* 0.0529*
EQUAR 0.0354 0.0052 0.0047 0.0137 0.0099 0.0085 0.0185
CHEAL 0.0270 0.0020 0.0041 0.0103 0.0021 0.0123 0.0144

VERAR 0.0458 0.0029 0.0159 0.0265 0.0188 0.0293 0.0105
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MYOAR 0.0420 0.0041 0.0542* 0.0289 0.0501* 0.0248 0.0253
POLCO 0.0076 0.0075 0.0025 0.0000 0.0050 0.0075 0.0025
CAPBP 0.0294 0.0157 0.0325* 0.0171 0.0168 0.0328* 0.0496*
LAPCO 0.0451 0.0031 0.0263 0.0443 0.0294 0.0474* 0.0179
VIOAR 0.0615 0.0604 . 0.0088 0.0188 0.0517 0.0792* 0.0275
LAMAM 0.0269 0.0059 0.0124 0.0037 0.0183 0.0022 0.0161
LAMPU 0.0471 0.0160 0.0001 0.0313 0.0160 0.0153 0.0313
AGRRE 0.0270 0.0172 0.0214 0.0025 0.0043 0.0147 0.0190
VERPE 0.0431 0.0266 0.0287 0.0103 0.0021 0.0163 0.0184
GERPU 0.0251 0.0088 0.0094 0.0218 0.0007 0.0130 0.0123
THLAR 0.0286 0.0115 0.0123 0.0024 0.0008 0.0091 0.0099

* significant differences at the level 0=0.05

Regarding the times of observations we can conclude that the mean Ra value
differed significantly for each of the studied species, especially between the first
and third time of weeds estimation (Table 5).

Table S. Multivariate comparisons of mean Ra between time of observations (2000)

Species L |T\-T) |T)-Ts |To-T
APESV [0.0335 0.0723* 0.1254* 0.0531*
GALAP [0.0360 0.0210 0.0209 0.0419*
MATIN (0.0406 0.0810* 0.0044 0.0854*
STEME (0.0413 0.0425* 0.1913* 0.1488*
GAETE (0.0365 0.0706* 0.0308 0.0398*
CIRAR (0.0339 0.0230 0.0465* 0.0236
EQUAR (0.0289 0.0218 0.0547* 0.0330*
CHEAL (0.0220 0.0611* 0.0555* 0.0056
VERAR [0.0373 0.0153 0.1142* 0.0990*
MYOAR (0.0343 0.0376* 0.0053 0.0429*
POLCO (0.0062 0.0000 0.0075* 0.0075*
CAPBP {0.0240 0.1094* 0.1476* 0.0382*
LAPCO [0.0367 0.0297 0.0462* 0.0165
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VIOAR |0.0502 0.0455 0.1014* 0.0558*
-LAMAM |0.0219 0.0254* 0.2505* 0.2759*
LAMPU 0.0384 0.0617* 0.1487* 0.0870*
AGRRE |0.0220 0.0000 0.0308* 0.0308*
VERPE |0.0351 0.0305 0.1232* 0.1537*
GERPU |0.0205 0.0227* 0.0164 0.0063
THLAR |0.0233 0.0428* 0.0389* 0.0039

* significant differences at the level a=0.05

The effect of herbicide doses was compared in the relevant time. In the spring
(T,) there were no significant changes in the weed community caused by the
doses of herbicides. After the herbicides’ application (T>) the studied feature of
only two species — MATIN and CAPBP - changed significantly. The highest
significant differences for both species were recorded between the plots with 75%
of the recommended dose and the ones without herbicides. In addition, the mean
Ra value of Capsella bursa-pastoris differed significantly also between 100% as
well as 50% of permissible dose and no-herbicide plots. For the last time of weeds
observation (T3), among all weeds CAPBP was the only species for which the
relative abundance differed significantly. This variety was noticed between the
direct sowing and the rest of the herbicide plots. Due to their large size the tables
comparing herbicide plots at successive time points are not presented in the paper.

4. Conclusions

A new form of the model (2.1.2) with restrictions Z® = 0 for the matrix Z
defined by the formula (2.2.3) enables us to use the multivariate analysis of
variance in order to analyze the experimental data.

The analysis of variance for the model (2.1.2) yields conclusions comparable
with practice — the changes observed in the weed community under experimental
factors.

The model (2.1.2) enables us to analyze the data from experiments conducted
in a similar way.

In the case of rejection of the null hypothesis it is possible to obtain more detalled
information by using the lowest significant differences (2.3.9).
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